在这个竞争激烈的世界,人们用数据进行决策的需求正在不断增长。在已成立的公司中,这一点可以通过提供财务报告、会计报告、市场报告和许多其他报告来证明。

“我需要更多的报告”
——Giorgio Tomassetti发布在Unsplash

然而,在数据分析环境中,“报告”和“分析”之间存在显著的差异。了解两者的区别将使企业能够:

  • 掌握更准确的信息
  • 获得更多更快的周转时间做出更具影响力的商业决策

具体区别是什么呢?

“报告”是指为决策提供信息的数据。典型的报告请求通常意味着可重复访问信息,这个重复可以是每月、每周、每天,甚至是实时的。

上述定义依赖于两个假设:

  • 数据是可用的:数据通常需要来自不同的源系统,这些源系统在公司内部或公司外部是分散的
  • 数据是干净的:通常需要对数据进行转换以供我们使用,并且需要对数据进行塑造以支持分析

“分析”是指原始数据分析。典型的分析请求通常意味着一次数据调查。

报告和分析,哪个为主?

当报告请求通过时,通常需要执行分析。当分析请求通过时,可能不需要报告。

以下是构建报告的一些步骤:

  • 了解业务需求
  • 连接并收集数据
  • 翻译技术资料
  • 从不同的维度理解数据背景
  • 想办法显示100个类别及其5个子类别的数据(500+组合!)
  • 重新整理数据
  • 范围更改
  • 重复上述步骤
  • 更多的返工
  • 在excel上的初始可视化
  • 解决利益相关者的理解问题
  • 启动报告仪表板构建
  • 配置特性和参数
  • 更多的返工
  • 测试用户体验
  • 符合公司风格指南
  • 测试报告自动化和部署
  • 与技术或生产团队保持联系
  • 设置定期刷新和故障的流程
  • 文档报告流程

这些都是很初始很表面的东西,如果企业想要较少的数据点或更好的事实理解,分析将是一个更高效的替代方案。

以下是数据分析中涉及的一些步骤:

  • 创建数据假设
  • 收集和处理数据
  • 向企业展示结果
  • re-iterate

只需要几步就能得到结果。

通往快速数据驱动型组织的道路

理解“报告”和“分析”之间的区别很重要。在当前的竞争环境中,理解的速度至关重要。

基于上述解释和步骤,从“分析”开始往往是最好的起点。如果需要广泛而定期地传播这些见解,可以编写一份报告,这也将减轻与常规自动化过程相关的技术操作负荷。

正如亚马逊创始人Jeff所说,我们需要更多的“实验”和数据探索,我们不需要更多的报告。

如果你是业务分析师,请将请求从“报告”细化为数据分析。

如果你是数据分析师,建议与企业就这些混乱的数据建立分析合作关系。

我们可以一起以快速和可持续的方式挖掘数据真正的商业价值。

原文作者:Albert Suryadi
翻译作者:过儿
美工编辑:过儿
校对审稿:Dongdong
原文链接:https://towardsdatascience.com/data-reporting-vs-analytics-aebff74509da

科技行业人士如何争取更高薪资?

Dec 08, 2024

尽管未来12个月科技行业和整体经济的发展难以预测,有一点是可以确定的:全球的公司将继续尝试用更少的资源完成更多的工作。

解读招聘冻结的六大误区

Sep 29, 2022

在过去的几个月里,几十家初创公司和大型科技公司已经宣布冻结招聘以及采取其他削减成本的措施。
实际的情况是,每家公司的招聘冻结都各有不同。

13大不同Title数据类岗位职能/要求详解

Mar 02, 2021

很多文章讨论不同数据类职位之间的差异(分析师,数据科学家,机器学习工程师等)。但几乎都没有提及这些职位与公司的不同业务职能(营销,产品,研发等)之间的关系。

Leave a Comment

Your email address will not be published. Required fields are marked *

Comment *